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Abstract The problem of steady, laminar, heat and mass transfer by mixed convection from a
semi-infinite, isothermal, vertical and permeable plate embedded in a uniform porous medium in
the presence of temperature-dependent heat source or sink and magnetic field effects is considered.
A muxed convection parameter for the entire range of free-forced-mixed convection is employed and
non-similar equations are obtained. These equations are solved numerically by an efficient implicit,
iterative, finite-difference scheme. The obtained results are checked against previously published
work on special cases of the problem and are found to be in good agreement. Useful correlations for
the local Nusselt number are obtained for various physical parameters. A parametric study
lustrating the influence of the magnetic field, porous medium inertia effects, heat generation or
absorption, concentration to theymal buoyancy ratio, and the Lewis number on the fluid velocity,
temperature and concentration as well as the Nusselt and the Sherwood numbers is conducted. The
obtained results are shown graphically and the physical aspects of the problem are discussed.

Nomenclature
B, = Magnetic field strength M = Square of the Hartmann number
= Dimensionless concentration at any (M = (6BK)/(ep))
point in the flow field N = Buoyancy ratio
c = Concentration at any point in the (N=(B:(cw — ¢x))/ (BT (T — Tx)))
flow field Nu, = Local Nusselt number (Nu,=hx/k.)
Cs = Concentration at the free stream p = Fluid pressure
¢w = Concentration at the wall Pe, = Local Peclet number (Pe,=Vxa.)
D = Mass diffusivity Pe;, = Peclet number at x=L
F = Inertia coefficient of the porous Qo = Heat generation or absorption
medium coefficient
f = Dimensionless stream function Ra, = Local Rayleigh number
f= Qb/(ae(Pe}{/Q + Rd)l(/z))) (Rax=pgfrK| Ty — Too((x/ ()
g = Gravitational acceleration Ra; = Rayleigh number at x=L
h = Local convective heat transfer Sh, = Local Sherwood number
coefficient (Shy=h,,x/D)
h,, = Local mass transfer coefficient T = Temperature at any point
K = Permeability of the porous medium T,, = Wall temperature
ke = Porous medium effective thermal T, = Free stream temperature
conductivity u = Tangential or x-component of
= Characteristic length velocity
Le = Lewis number (Le = /D) v = Normal or y-component of velocity



v, = Wall mass transfer coefficient 10) = Dimensionless heat absorption
Vs = Free stream velocity parameter (¢ = Q,/(pCcpVo))
X = Distance along the plate n = Coordinate transformation in terms
y = Distance normal to the plate of xand y (n = y(Pel/? + Ral/?) /x)
X = Mixed convection parameter
Greek symbols (x = (14 (Ray/Pex)/*)™)
€ = Porosity of porous medium P = Stream function
T = Dimensionless porous medium 0 = Dimensionless temperature
inertia coefficient @=(T—-Tw)/(Ty — Tw))
(T = ZFK(Pei/2 + Rai/z)/(uL)) p = Fluid density
o, = Effective thermal diffusivity of the o = Fluid electrical conductivity
porous medium £ = Transformed suction or injection
B. = Concentration expansion coefficient parameter
Br = Thermal expansion coefficient (€ = vox(Pel/? + Ral/?) ™ /a,)
Introduction

Recently, there has been increased interest in investigating buoyancy-induced
flow by simultaneous heat and mass transfer from different geometries
embedded in porous media. This interest stems from the fact that these flows
have many engineering and geophysical applications such as geothermal
reservoirs, drying of porous solids, thermal insulation, enhanced oil recovery,
packed bed catalytic reactors, cooling of nuclear reactors, and underground
energy transport. Most early studies on porous media have used the Darcy law,
which is a linear empirical relation between the Darcian velocity and the
pressure drop across the porous medium and is limited to slow flows. However,
for high velocity flow situations, the Darcy law is inadequate for predicting the
proper physical flow behavior since it neglects the porous medium inertia
effects, which become important. In this situation, the pressure drop across the
porous medium is a quadratic function of the flow rate. It has been reported
that the high flow situation is established when the Reynolds number based on
the pore size is greater than unity. Vafai and Tien (1981) have discussed the
importance of inertia effects for flows in porous media.

Cheng and Minkowycz (1977) have presented similarity solutions for free
thermal convection from a vertical plate in a fluid-saturated porous medium.
The problem of combined thermal convection from a semi-infinite vertical plate
in the presence or absence of a porous medium has been studied by many
authors (see, for example, Minkowycz et al., 1985a; Ranganathan and Viskanta,
1984; Nakayama and Koyama, 1987; Hsieh ef al, 1993). Nakayama and
Koyama (1987) have suggested similarity transformations for pure, combined
and forced convection in Darcian and non-Darcian porous media. Lai (1991) has
investigated coupled heat and mass transfer by mixed convection from an
isothermal vertical plate in a porous medium. Hsieh ef al. (1993) have presented
non-similar solutions for combined convection in porous media.

There has been a renewed interest in studying magnetohydrodynamic
(MHD) flow and heat transfer in porous and non-porous media due to the effect
of magnetic fields on flow control and on the performance of many systems
using electrically-conducting fluids. For example, Raptis ef al (1982a) have

Non-similar
solutions

143




HFF
10,2

144

analyzed hydromagnetic free convection flow through a porous medium
between two parallel plates. Aldoss et al. (1995) have studied mixed convection
from a vertical plate embedded in a porous medium in the presence of a
magnetic field. Bian ef al (1996) have reported on the effect of an
electromagnetic field on natural convection in an inclined porous medium.
Buoyancy-driven convection in a rectangular enclosure with a transverse
magnetic field has been considered by Garandet et @l (1992) and Khanafer and
Chamkha (1998).

In certain porous media applications such as those involving heat removal
from nuclear fuel debris, underground disposal of radioactive waste material,
storage of food stuffs, and exothermic chemical reactions and dissociating
fluids in packed-bed reactors, the working fluid heat generation (source) or
absorption (sink) effects are important. Analysis of these situations requires the
addition of a heat source or sink term in the energy equation. This term has
been assumed to be either a constant (Acharya and Goldstein, 1985; Song,
1996), space-dependent and/or temperature-dependent (Vajravelu and Nayfeh,
1992; Chamkha, 1996; 1997).

The effects of fluid wall suction or injection the flow and heat transfer
characteristics along vertical semi-infinite plates have been investigated by
several authors (Cheng, 1977; Lai and Kulacki, 1990a,b; Minkowycz et al,
1985h; Hooper et al, 1993). Some of these studies have reported similarity
solutions (Cheng, 1977; Lai and Kulacki, 1990a,b), while others have obtained
non-similar solutions, Minkowycz et al, 1985b; Hooper et al, 1993). For
example, Lai and Kulacki (1990a,b) have reported similarity solutions for
mixed convection flow over horizontal and inclined plates embedded in fluid-
saturated porous media in the presence of surface mass flux. On the other hand,
Minkowycz et al. (1985b) have discussed the effect of surface mass transfer on
buoyancy-induced Darcian flow adjacent to a horizontal surface using non-
similarity solutions. More recently, Hooper et al (1993) have considered the
problem of non-similar mixed convection flow along an isothermal vertical
plate in porous media with uniform surface suction or injection and introduced
a single parameter for the entire regime of free-forced-mixed convection. Their
non-similar variable represented the effect of suction or injection at the wall.

The objective of this paper is to generalize the work of Hooper et al. (1993)
and consider simultaneous heat and mass transfer by mixed convection from a
permeable vertical plate embedded in a fluid-saturated porous medium in the
presence of suction or insection, magnetic field effects, heat generation or
absorption effects, and porous medium inertia effects. This will be done for
isothermal and isoconcentration wall conditions in the entire range of free-
forced-mixed convection regime.

Problem formulation

Consider steady hydromagnetic mixed convection from a permeable semi-
infinite vertical plate embedded in a porous medium in the presence of heat
generation (Source) or absorption (sink). Uniform suction or injection with



speed v,, is imposed at the plate surface. A uniform magnetic field is applied in
the horizontal direction normal to the plate. The porous medium is assumed to
be uniform, isotropic and in thermal equilibrium with the plate. Let the plate be
maintained at a constant temperature T, and concentration c,, and the free
stream velocity, temperature and concentration be V., T, and Cg,
respectively. Further assume that all fluid properties are constant except the
density in the body force term of the linear momentum balance. Under the
Boussinesq and boundary-layer approximations, the governing equations for
this problem can be written as

ou Ov
ox "oy =" (1)
B2K 2FK 0 K oT
<1+U° +—u>—u=—pg<ﬁT + Be ) (2)
Ep Iz dy p
oT oT ’PT  Q,

4 v—==D-—— 4
u(9x+v6y ay? )

where x and y denote the vertical and horizontal directions respectively. u, v, T
and c are the x- and y-components of velocity, temperature and concentration
respectively. p, i1, o, ¢, and D are the fluid density, dynamic viscosity, electrical
conductivity, specific heat at constant pressure, and mass diffusion coefficient
respectively. K, ¢, F, and «, are the porous medium permeability, porosity,
Forcheimer constant, and effective thermal diffusivity, respectively. B, G, S.
and Q, are the magnetic induction, thermal expansion coefficient, concentration
expansion coefficient, and heat generation (>0) or absorption (<0) coefficient
respectively.

It should be noted that equation (2) is obtained by using the modified
Brinkman extension of Darcy law which includes the porous medium inertia
effects, magnetic effects and thermal and concentration buoyancy effects and
neglects the convective terms and then differentiating with respect to y in order
to eliminate the pressure gradient term by using the y-momentum equation
(after differentiating with respect to x) which gives 0‘9 =0.

The boundary conditions suggested by the physics of the problem are

v(x,0) =v,, T(x,0) =Ty , ¢(x,0) =cy

u(x,00) = Voo , T(x,00) = To , ¢(x,00) = o

()

It is convenient to transform the governing equations into a non-similar
dimensionless form which can be suitable for solution as an initial-value
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problem. This can be done by introducing the stream function such that

_w %
and using
_ Y (ppl/2 1/2 VoX (1 1/2 12\ ¢
n_X(PeX +Ral?) | €= - (Pel/* + Rall?) (7)
T - Ty c—c¢

_ 1/2 1/2 _ 7l e

v = ac(Pel? +Ral?)(E ) 0E M) =+ Clem) =
(8)

where Pey = Vox/ae and Ra, = gfr|Ty, — T |Kx/(va.) are the local Peclet
and Rayleigh numbers respectively.
Substituting equations (6) through (8) into equations (1) through (5) produces

(1+M+THf = (1-x)*0+NC) (9)
, 1., ,00 of

0 +§f9 + ¢ = f(fa—g—ﬁag) (10)
—1r 1 _ /@_ /ﬁ

Le ' C —|—§fC §(f % C 35) (11)

f(§7 ) +§8§ (57 ) = _2€ or f(g,O) = _€ ) 9(5) 0) = 17 C(S?O) =1
where

B2K 2FK «
M=""02 P =T 2 Pel? tRa/?) | Le==

al oL ( + ) D )

_ Be(Cw — Co0) _ Qo _ 1/2 -1
N= g E oy @ e+ X = [+ (Ray/Pey)'”]

are square of the Hartmann number, dimensionless porous medium inertia
coefficient, Lewis number, concentration to thermal buoyancy ratio,
dimensionless heat generation (>0) or absorption (<0) coefficient, and the
mixed convection parameter, respectively. It should be noted that in equation
(13) L is a characteristic length and that y = 0(Pex = 0) corresponds to pure
free convection while y = 1(Ra, = 0) corresponds to pure forced convection.
The entire regime of mixed convection corresponds to values of x between 0
and 1.



Of special significance for this flow and heat transfer situation are the local
skin-friction coefficient and local Nusselt number. These physical quantities
can be defined as

- Ju
Cr = w = (P 172 R 1/2 3f” 0) ; w — a.
f Mae/XZ ( (S + a ) (57 ) ;T 1% 8}7 0 (14)
hx q oT
NX:7:_P1/2 1/2 / hziw W:—ke —_—
=1 = ~(Pe" + Ra)IE0) s b =75 9y ) g
(15)
h.x m aC
h, = nt _ _(p 1/2 1/2\ v ‘hy, = v, w=—-D[—=—
S D ( ex + Rax )C (57 0) ) Cyw — Coo y M 6y v=0
(16)

where k. is the porous medium effective thermal conductivity and 7, and g,
are respectively the wall shear stress and wall heat transfer.

Numerical method and validation
Equations (9) through (12) represent an initial-value problem with £ playing the
role of time. This nonlinear problem can not be solved in closed form and,
therefore, a numerical solution is necessary to describe the physics of the problem.
The implicit, tri-diagonal finite-difference method similar to that discussed by
Blottner (1970) has proven to be appropriate and sufficiently accurate for the
solution of similar problems. Therefore, it is adopted in the present investigation.
All first-order derivatives with respect to £ are first replaced by two-point
backward-difference formulae when marching in the positive ¢ direction and
by two-point forward-difference formulae when marching in the negative &
direction. Then, all second-order differential equations in 7 are discretized
using three-point central difference quotients. This discretization process
produces a tri-diagonal set of algebraic equations at each line of constant &
which is readily solved by the well known Thomas algorithm (see Blottner,
1970). During the solution, iteration is employed to deal with the non-linear
nature of the governing differential equations. The problem is solved line by
line starting with line £ = 0 where similarity equations are solved to obtain the
initial profiles of velocity, temperature and concentration and marching
forward (or backward) in £ until the desired line of constant £ is reached.
Variable step sizes in the 7 direction with An; = 0.001 and a growth factor G =
1.03 such that Az, = GAn,_; and constant step sizes in the £ direction with
A& = 0.01 are employed. These step sizes are arrived at after many numerical
experimentations performed to assess grid independence. The convergence
criterion employed in the present work is based on the difference between the
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current and the previous iterations. When this difference reached 107 for all
points in the 7 directions, the solution was assumed converged and the iteration
process was terminated.

Tables [ and II present a comparison of —¢'(,0) at selected values of £ and
x between the results of the present work and those reported earlier by Hooper
et al. (1993). It is clear from this comparison that a good agreement between the
results exists. This lends confidence in the correctness of the numerical results
to be reported subsequently. It should be noted that in Table II, the value of
—0'(£,0) at € = —2 and y = 1 seems to be in error as this value cannot be
1.0502. While comparisons with experimental data would be most favorable, no
such data for mixed convection appear to exist at present. However, Cheng ef
al. (1981) reported an experimental study of non-Darcian effects in free
convection x(= 0) along an impermeable (£ = 0) vertical plate in a saturated
porous medium. For this special case a good agreement is found between the
present results and their experimental data.

Results and discussion

Figures 1 and 2 illustrate the effects of the magnetic parameter (square of
Hartmann number) M on the velocity and temperature (or concentration) f/, 0
(or C) profiles at the end of the computational domain respectively. Application
of a uniform magnetic field normal to the flow direction produces a force which
acts in the negative direction of flow. This force is called the Lorentz force,
which tends to slow down the movement of the electrically-conducting fluid in
the vertical direction. This retardation effect is accompanied by an appreciable
increase in the fluid temperature and concentration. These behaviors are
clearly depicted in Figures 1 and 2. It should noted that in these figures the
value of Le is taken to be unity while the value of ¢ is taken to be zero. This is
done intentionally so that the effect on the temperature will be the same as that
on the concentration since both become governed by the same differential
equation interms of 6 or C in order to minimize the number of figures.

Figures 3 and 4 show the effects of the mixed convection parameter x on the
velocity and temperature (or concentration) profiles at £ = 1 respectively. From
the definition of y, it is seen that increases in the value of the parameter Ra,/Pe,
causes the mixed convection parameter  to decrease. Thus, small values of Ra,/
Pe, correspond to values of x close to unity, which indicate almost pure forced
convection regime. On the other hand, high values of Ra,/Pe, correspond to
values of x close to zero, which indicate almost pure free convection regime.
Furthermore, moderate values of Ra,/Pe, represent values of x between 0 and 1,
which correspond to the mixed convection regime. For the forced convection limit
(x = 1) it is clear from equation (9) that the velocity in the boundary layer f’ is
uniform. This is so because of the absence of the viscous term (Brinkman) from
the momentum equation. However, for smaller values of  (higher values of Ra,/
Pe,) the buoyancy effect increases and the free stream velocity decreases. As this
occurs, the fluid velocity close to the wall increases for values of ¥ < 0.5 due to
the buoyancy effect which becomes maximum for x = 0 (free convection limit).



£=-20 ¢(=-15 £=-10 £=-05 £=0 £=05 €=10 €=15 €=20
x =0.0 1.99894 1.51347 1.07262 0.71213 0.44401 0.26006 0.14240 0.07248 0.03408
x=0.1 1.99793 1.50595 1.05094 0.67701 0.40375 0.22301 0.11337 0.05264 0.02214
x=0.2 1.99762 1.50265 1.03825 0.65264 0.37339 0.19439 0.09140 0.03843 0.01431
x =0.3 1.99752 1.50196 1.03398 0.64064 0.35517 0.17568 0.07686 0.02940 0.00972
x =04 1.99757 1.56354 1.03732 0.64149 0.35071 0.16812 0.06997 0.02496 0.00754
x =05 1.99824 1.50501 1.04780 0.65451 0.36045 0.17253 0.07097 0.02477 0.00725
x =0.6 2.00066 1.51648 1.06526 0.67828 0.38338 0.18901 0.08029 0.02403 0.00884
x =0.7 2.00589 1.52982 1.08954 0.71116 0.41750 0.21666 0.09824 0.03849 0.01292
x =038 2.01485 1.54852 1.12021 0.75148 0.46044 0.25385 0.12471 0.05408 0.02055
x =09 2.02831 1.57278 1.15675 0.79778 0.50998 0.29864 0.15899 0.07636 0.03289
x=1.0 2.04971 1.60251 1.19899 0.84882 0.56433 0.34826 0.19979 0.10491 0.05036
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T
Y €=-20 £=-15 £=-10 £=-05 €=0 €=05 €=10 €=15 £=20
0.0 2.0015 1.5148 1.0725 0.7114 04437 0.2593 0.1417 0.0717 0.0335
0.1 2.0005 1.5076 1.0510 0.6763 0.4035 0.2223 0.1127 0.0519 0.0216
02 2.0003 1.5046 1.0386 0.6520 0.3732 0.1937 0.0907 0.0378 0.0139
03 2.0003 1.5042 1.0347 0.6401 0.3550 0.1750 0.0762 0.0288 0.0084
04 2.0005 1.5060 1.0384 0.6411 0.3504 0.1674 0.0693 0.0244 0.0072
05 2.0016 1.5106 1.0491 0.6543 0.3603 0.1719 0.0704 0.0242 0.0069
0.6 2.0042 1.5192 1.0666 0.6782 0.3832 0.1884 0.0797 0.0284 0.0085
0.7 2.0095 1.5324 1.0908 0.7111 0.4196 0.2036 0.0999 0.0339 0.0134
0.8 2.0185 1.5510 11214 0.7515 0.4602 0.2534 0.1242 0.0535 0.0201
09 2.0319 1.5751 1.1579 0.7978 05097 0.2982 0.1586 0.0758 0.0324
1.0 1.0502 1.6047 1.1995 0.8488 05642 0.3488 0.1996 0.1047 0.0502
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This decrease and increase in the fluid velocity f’ as  is decreased from unity to
zero is accompanied by a respective increase and a decrease in the fluid
temperature or concentration. These velocity and temperature or concentration

behaviors are evident from Figures 3 and 4.
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Figure 1.
Effects of M on velocity
profiles

Figure 2.

Effects of M on
temperature or
concentration profiles
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Figure 3.
Effects of x on velocity
profiles

Figure 4.

Effects of x on
temperature or
concentration profiles
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Figures 5 and 6 present the changes in the velocity and temperature (or Non-similar
concentration) profiles at £ = 1 that are brought about by changes in the solutions
buoyancy ratio N respectively. For a fixed value of x = 0.5 (Ra,/Pe, = 1)
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Figure 7.
Effects of ¢ on velocity
profiles

increases in the value of N have the tendency to increase the buoyancy effect,
causing more induced flow along the plate in the vertical direction. This
enhancement in the flow velocity is achieved at the expense of reduced fluid
temperature and concentration as well as reduced thermal and concentration
boundary layers as seen from Figures 5 and 6.

The effects of the heat generation or absorption coefficient ¢ on the velocity
and temperature profiles at £ = 1 are displayed in Figures 7 and 8 respectively.
The presence of a heat generation source in the flow represented by positive
values of ¢ enhances the thermal state of the fluid, causing its temperature to
increase. This, in turn, increases the thermal buoyancy effect which produces
higher induced flow. On the contrary, the presence of a heat absorption sink in
the flow represented by negative values of ¢ reduces the fluid temperature
which, in turn, diminishes the induced flow due to thermal buoyancy effects.
These behaviors are clearly seen from Figures 7 and 8. Also, it should be noted
that for the case of heat generation (¢ > 0) the maximum fluid temperature
does not occur at the wall but rather in the fluid layer adjacent to the wall as
shown in Figure 8.

Figures 9 and 10 depict the influence of the Lewis number Le on the velocity
and concentration profiles at £ = 1 respectively. Increases in the values of the
Lewis number result in decreasing the concentration distribution within the
boundary layer. This decrease in concentration produces decreases in the
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Figure 8.
Effects of ¢ on
temperature profiles

Figure 9.
Effects of Le on velocity
profiles
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Figure 10.
Effects of Le on
concentration profiles
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induced flow due to the resulting reductions in the concentration buoyancy
effects. It is seen from Figures 9 and 10 that increasing the value of Le causes
both the velocity and concentration boundary layer thickness to decrease.

The porous medium inertia effects represented by I' on the velocity and
temperature (or concentration profiles) at £ = 1 are shown in Figures 11 and 12
respectively. Obviously, the porous medium inertia parameter I' provides a
resistance to flow mechanism which causes the fluid to move at a slower rate
and with an increased temperature and concentration. These behaviors are
displayed in Figures 11 and 12.

Figure 13 illustrates the influence of the magnetic field on the Nusselt or
Sherwood numbers Nu (Nu, /(Pel/? 4 Ral/?)) or Sh (Shy(Pel/? 4 Ral/?)) at
& = 1 in the entire regime of mixed convection 0 < x < 1. For a specific value
of y other than y = 1, as the square of the Hartmann number M increases, the
wall slopes of the temperature and concentration profiles increase as shown
earlier in Figure 2 causing both the Nusselt and Sherwood numbers to decrease.
This effect on Nu and Sh is more pronounced for relatively smaller values of M
than for larger values as this effect becomes small. It is interesting to note that
for smaller values of M (0 < M < 1) distinctive dips in the values of Nu and Sh
occur in the range of 0 < y <1 and that these dips move in the direction of
smaller y values as M increases.

In Figure 14, the effects of the heat generation or absorption coefficient ¢ on
the Nusselt number Nu at £ =1 in the entire mixed convection regime are
shown. As seen earlier from Figure 8, the wall slope of the temperature profile
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Figure 11.
Effects of T" on velocity
profiles

Figure 12.

Effects of T on
temperature or
concentration profiles
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increases as ¢ increases. This causes the Nusselt number which is directly
proportional to —¢'(¢, 0) to decrease as is obvious from Figure 14. For the heat
generation case (¢ = 0.25) shown, the negative values in Nu for some values of



x are due to the existence of fluid temperature peaks in the fluid layers adjacent
to the wall for which the slope of the temperature profile at the wall #'(,0) is
positive, as discussed earlier.

Figure 15 displays the effects of the Lewis number Le on the Sherwood
number Sh at £ = 1 in the whole mixed convection range. It is predicted that
the Sherwood number increases for increases of Le in the range of
0.1 < Le < 1.0 and decreases as Le is increased beyond Le = 1. Inspection of
Figure 10 shows that the wall slope of the concentration profile at £ = 1
decreases for 0.1 < Le < 1.0 while it increases for values of Le > 1. These
behaviors are consistent with the behavior of the Sherwood number for
various values of Le as it is related to the negative wall slope of the
concentration profile.

Finally, in Figure 16, the effects of the buoyancy ratio N and the transformed
suction or injection parameter £ on the Nusselt number Nu are displayed. It is
noted that an increase in wall suction (£ < 0) produces an increase in the local
Nusselt number while an increase in injection (£ > 0) results in lower surface
heat transfer. This is consistent with the results reported earlier by Hooper et
al. (1993). Obviously, increasing the buoyancy ratio N increases the flow along
the plate and its temperature causing the negative wall slope of the temperature
profile to increase. This yields enhancements in the wall heat transfer. These
behaviors are evident from Figure 16.
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Figure 15.
Effects of Le and x on
the Sherwood number
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Useful correlations
In this section, various correlations for the local Nusselt number Nu (and in one
case the local Sherwood number Sh) as a function of either the mixed
convection parameter y, the Hartmann number M or the heat generation or
absorption coefficient ¢ are reported.

First, correlations for Nu and Sh as functions of x are found (with M = N =
Le=¢=1.0andT = ¢ = 0) as follows:

Nu = 0.1429 — 0.3298 -+ 0.3581y + 0.03134> (C1)

Sh = 0.2901 — 0.5512x + 0.3536x> + 0.1090%" (C2)

The above correlations provide results that agree fairly well with the numerically
predicted values. They are recommended for the entire range of mixed-
convection regime (0 < x < 1) with each having a maximum error of 0.4 percent.

Second, a correlation for Nu as a function of x is also found (with M =0, N =
Le, £=1.0,T = 0and ¢ = 0.25) as follows:

Nu = 0.1728 — 0.6613y + 0.3040x> + 0.2559> (C3)
The above correlation has a maximum error of 1.1 percent.

Third, a correlation for Nu in terms of both y and M (withN=Le=¢ =1.0
andI" = ¢ = 0) is found as follows:

Nu = 0.1305 — 0.2216) — 0.02914M + 0.3407x? + 0.003236M?>  (C4)



Correlation (C4) is suitable for 1 <M <4 and 0.25 <y <1 and has a
maximum error of 20 percent. It is also found that if the range of x is extended
to include the free-convection limit (y = 0), and the range of M included the
case where the magnetic field is absent, the maximum error increases to about
30 percent. For this case a correlation is given as follows:

Nu = 0.1923 — 0.3173x — 0.058M + 0.3833x? + 0.0088M> (C5)

Fourth, a correlation for Nu which combines the effects of both y and ¢ with M
=0,N=Le=¢=1.0,and I" = 0) is found as follows:

Nu = 0.2707 — 0.4842x — 0.2542¢ + 0.4055x> — 0.5084¢> (C6)

The above correlation is valid for the ranges of 0 < y < 1and —0.5 < ¢ < 0 and
has a maximum error of 11 percent. If the range of ¢ is extended up to ¢ = 0.25,
the maximum error increases to 23 percent. This correlation is found as follows:

Nu = 0.2875 — 0.5868x — 0.5564¢ + 0.4975x> — 0.09543 4> (7)

It should be mentioned that correlations for Nu as a function of positive or
negative values of £ were reported by Hooper et al. (1993). Therefore, none are
shown here.

Conclusion

In this study, the effects of a temperature-dependent heat source or sink and
magnetic field on heat and mass transfer by mixed convection from a vertical
permeable plate in porous media were considered. A single parameter for the
entire range of free-forced-mixed convection regime was employed. The
obtained non-similar differential equations were solved numerically by the
finite-difference methodology. Useful correlations for the local Nusselt number
were reported. It was found that both the Nusselt and Sherwood numbers
decreased due to the presence of a magnetic field for the whole range of free and
mixed convection regime while they remained constant for the forced-
convection regime. However, they decreased and then increased, forming dips
as the mixed-convection parameter was increased from the free-convection
limit to the forced-convection limit. The effect of heat generation (source) was
found to decrease the Nusselt number while the opposite was predicted for heat
absorption (sink) conditions. The Sherwood number was increased with
increases in the Lewis number up to a limit, after which it decreased with
further increases in the Lewis number.
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